JULY 2010 TRAC RESULTS

Eastern GB cod \& haddock and GB yellowtail flounder

NEFMC
Newport, RI
September 30, 2010

TRAC Management Units

Allocation Shares

Eastern GB Atlantic Cod

Catch

EGB Cod
Canadian and USA Total Catch

- Canadian + USA 2009 total catch 1,858 mt (Quota 1,700 mt)
- Canadian 2009 catch 1,209 mt (Quota 1,173 mt) ;both CY
- USA 2009 catch 649 mt (CY) (Quota 527 mt- FY)
- Two VPA formulations: split "M 0.2 " \& "M 0.5"
- Survey indices split in 1993-1994 for both models (unknown cause of retrospective aliased as change in sv catchability)
- Natural mortality (M) = 0.2 for all ages in "M 0.2", increased M for ages 6+ in "M 0.5"
- Benchmark : consider both model formulations until the fate of the 2003 year class has been documented, thus providing information on M .

EGB Cod

- 6,394 mt (split M 0.2) \& 9,260 mt (split M 0.5) in 2010
- Increase since 2005 due to strong 2003 year class.

Survey \& 1+ biomass

- 1+ population biomass and SV biomass indices : fluctuating at low values since 1994

Recruitment

* 2003 M. 2 YC (3.6M) ~ 1996 YC; 2003 M. 5 YC (5M) strongest since 1990 YC
* 2002 YC and 2004 YC weakest ($0.5 \mathrm{M}-1 \mathrm{M}$) on record * 2008 YC similar to 2007 YC and 2005 YC.

Fishing Mortality

EGB Cod

$2009 \mathrm{~F}=0.33$ (M0.2) \& 0.20 (M0.5) 2009.
Lowest F on record ; still above $F_{\text {ref }}$ $F>F_{\text {ref }}=0.18$ for entire time series

Stock Recruitment

EGB Cod

Currently low productivity; low weights at age Rct event more likely > 30,000 mt SSB

2011 Projection : Fref

EGB Cod

Probability of Exceeding Fref in $\mathbf{2 0 1 1}$	25%	50%	$\mathbf{7 5 \%}$
Split M 0.2	850 mt	$1,000 \mathrm{mt}$	$1,150 \mathrm{mt}$
Split M 0.5	$1,250 \mathrm{mt}$	$1,400 \mathrm{mt}$	$1,600 \mathrm{mt}$

Split M 0.2 model: A catch of about 1,000 mt in 2011 will result in a neutral risk (50\%) that the fishing mortality rate in 2011 will exceed $F_{\text {ref }}$

Split M 0.5 model: A catch of about 1,400 mt in 2011 will result in a neutral risk (50\%) that the fishing mortality rate in 2011 will exceed Fref

2011 Projection : Biomass EGB Cod

Risk that the 4+ adult biomass in $\mathbf{2 0 1 2}$ will be lower than the $\mathbf{2 0 1 1}$ biomass	$\mathbf{2 5 \%}$	50%	75%
Split M 0.2	$1,525 \mathrm{mt}$	$1,850 \mathrm{mt}$	$2,250 \mathrm{mt}$
Split M 0.5	750 mt	$1,350 \mathrm{mt}$	$1,850 \mathrm{mt}$

Split M 0.2: 1,850 mt cacth \rightarrow results in 50\% risk that 4+ biomass in 2012 < 2011

Split M 0.5: 1,350 mt catch \rightarrow results 50% risk that 4+ biomass in 2012 < 2011

2011 Projection : Biomass EGB Cod

Risk that the 4+ adult biomass in $\mathbf{2 0 1 2}$ will not increase by $\mathbf{1 0 \%}$	$\mathbf{2 5 \%}$	50%	75%
Split M 0.2	750 mt	$1,100 \mathrm{mt}$	$1,550 \mathrm{mt}$
Split M 0.5	-	450 mt	$1,100 \mathrm{mt}$

Split M 0.2: 1,100 mt catch results in 50\% risk that 4+ biomass in 2012 will not increase by 10\%

Split M 0.5: 450 mt catch results in 50% risk that 4+ biomass in 2012 will not increase by 10\%

	"split M 0.2"			"split M 0.5"		
	25\%	50\%	75\%	25\%	50\%	75\%
Probability of Exceeding Fref in 2011	850 mt	1,000 mt	1,150 mt	1,250 mt	1,400 mt	1,600 mt
Risk that the 4+ adult biomass in 2012 will be lower than the 2011 biomass	1,525 mt	1,850 mt	2,250 mt	750 mt	1,350 mt	1,850 mt
Risk that the 4+ adult biomass in 2012 will not increase by 10\%	750 mt	1,100 mt	1,550 mt	-	450 mt	1,100 mt
Risk that the 4+ adult biomass in 2012 will not increase by 20\%	350 mt	750 mt	1,250 mt	-	-	350 mt

- F reduced but still above $\mathrm{F}_{\text {ref }}$
- Recent recruitment generally poor
- 2003 YC \& 2006 YC dominate in 2009 fishery
- Low numbers: 7+ fish; reduced weights at age
- Low biomass ; Fishing below Fref will maintain a higher biomass
- Rebuilding will not occur without improved recruitment
- 2 models equally viable \& both should be considered

Eastern GB Haddock

Catch

EGB Haddock

Total 2009 catch: 19,707 mt Canada: 17,649 mt (18,900 mt quota) US: $2,058 \mathrm{mt}$ (11,000 mt quota)

Fishing Mortality EGB Haddock

Biomass

EGB Haddock

- 2009 record-high 157,300 mt - 2010 biomass $=125,100 \mathrm{mt}$

Recruitment EGB Haddock

- 2003 YC = 293 million age 1; record
- since 1990 ~ 9M w/exception '00 \&’03
- 2005 YC (24.3 M) ~ ts average (26.5 M)
- 2009 YC ~ 5 Million

Stock/Recruitment
 EGB Haddock

-Higher rct when $40 \mathrm{~K}<=\mathrm{SSB}<=100 \mathrm{~K} \mathrm{mt}$ - Stock will decrease in near future w/lower rct

Projection \& TAC

EGB Haddock

-2011 catch $=22,000 \mathrm{mt} \rightarrow 50 \%$ risk $\mathrm{F}>\mathrm{F}_{\text {ref }}$ -2003 YC will be 75\% of 2011 yield

Fishery Partial Recruitment EGB Haddock (Proportion of population available to fishery, by age)

Catch will decline in 2012 as 2003 YC becomes age 9 and selectivity/vulnerability to gear decreases to 50\%

This is in addition to declining population numbers (rct)

EGB Haddock

- Low F in 2009 ; F < $\mathrm{F}_{\text {ref }}$ since 1995
- Except for the 2000 and 2003 YCs, recruitment has averaged 9 million fish at age 1 recently
- Biomass high; 2003 year class has reached its maximum biomass. Biomass expected to decline to $68,000 \mathrm{mt}$ in 2012, fishing at $F_{\text {ref }}$
- Fishing up to $F_{\text {ref }}$ does not pose conservation concerns for haddock

GB Yellowtail Flounder

Catch

YT FLD

Combined Canada and USA catches in 2009 were 1,778 mt USA: 1,689 mt , CA : 89 mt

- The 2008 \& 2009 DFO surveys each had a very high catches of YT, these were treated in 2009 assessment by 'including' and 'excluding' models
- 2010 assessment
- has a single model formulation.
- continues wl split survey series
- large tows 'downweighted' (by variance)

3+ Biomass

- 1995: 2,100 mt, 2003: 11,000 mt, 2006: 2,900 mt 2009: 13,000 mt , 2010: 14,600
-2009 3+ highest since 1983; 2010 highest since ‘74

3+ Biomass

YT FLD

Perception of stock shifted w/reduction of 2005 YC

Stock 36\%-53\% lower than 2009 assessment

2009 SSB ~ 14,000 mt

Recruitment

YT FLD

- During 1998-2001: average 22.2 million - 2005 YC (23.9) \& 2006 YC (22.2 yc) - 2007 YC \& 2008 YC (6-8 million) poorest

Recruitment

2007-2009 assessment: 2005 YC ~ 60 million 2010 assessment: 2005 YC ~ 23.9 million
'05 not seen in SVs or comm. catch as expected

Fishing mortality

1973-1995 : F > 1.0, 1996-2003: 0.51-0.97 2004: $F=1.91$, 2007: $F=0.53$ 2008-2009 F= $0.15<\operatorname{Fref}(0.25)$

Projection \& 2011 TAC
 YT FLD

Probability of exceeding $\mathrm{F}_{\text {ref }}$	25%	50%	75%
2011 quota	$3,100 \mathrm{mt}$	$3,400 \mathrm{mt}$	$3,800 \mathrm{mt}$

Projection \& 2011 TAC
 YT FLD

Probability of exceeding $\mathrm{F}_{\text {ref }}$	25%	50%	75%
2011 quota	$3,100 \mathrm{mt}$	$3,400 \mathrm{mt}$	$3,800 \mathrm{mt}$

Adjustment for retrospective that tends to estimate higher biomass

Projection \& 2011 TAC
 YT FLD

Probability of exceeding $\mathrm{F}_{\text {ref }}$	25%	50%	75%
2011 quota	$3,100 \mathrm{mt}$	$3,400 \mathrm{mt}$	$3,800 \mathrm{mt}$

Adjusting for retrospective tendency to overestimate biomass

\% biomass increase	20%	10%	0%
2011 quota	400 mt	$1,900 \mathrm{mt}$	$3,400 \mathrm{mt}$

USA Rebuilding

YT FLD

- Calculate F which results in a 75% Probability of reaching 43,200 mt by 2014
- Rebuilding target cannot be achieved by 2014 even with no fishing (P~36\%)
- Using more realistic recruitment (lower), the probability of achieving US rebuilding targets was further reduced

Summary

YT FLD

- F was very high, below $F_{\text {ref }}$ only in 2008 \& 2009
- Highest adult biomass since 1974
- Change in perception of stock due to updated 2005 year class
- Increased uncertainty:retrospective re-emerging
- USA requirements for rebuilding not attainable with current productivity

